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Abstract 

Two previous studies, one done at Stanford in 1997 based on data collected by 
the Google search engine, and one done at Digital in 1996 based on AltaVista 
data, revealed that almost a third of the Web consists of duplicate pages. Both 
studies identified mirroring, that is, the systematic replication of content over a 
pair of hosts, as the principal cause of duplication, but did not further investigate 
this phenomenon. The main aim of this paper is to present a clearer picture of 
mirroring on the Web. As input we used a set of 179 million URLs found during a 
Web crawl done in the summer of 1998. We looked at all hosts with more than 
100 URLs in our input (about 238,000), and discovered that about 10% were 
mirrored to varying degrees. The paper presents data about the prevalence of 
mirroring based on a mirroring classification scheme that we define.  

There are numerous reasons for mirroring: technical (e.g., to improve access 
time), commercial (e.g., different intermediaries offering the same products), 
cultural (e.g., same content in two languages), social (e.g., sharing of research 
data), and so forth. Although we have not done a exhaustive study of the causes 
of replication, we discuss and provide examples for several representative cases.  

Our technique for detecting mirrored hosts from large sets of collected URLs 
depends mostly on the syntactic analysis of URL strings, and requires retrieval 
and content analysis only for a small number of pages. We are able to detect 
both partial and total mirroring, and handle cases where the content is not byte-
wise identical. Furthermore, our technique is computationally very efficient and 
does not assume that the initial set of URLs gathered from each host is 
comprehensive. Hence, this approach has practical uses beyond our study, and 
can be applied in other settings. For instance, for web crawlers and caching 
proxies, detecting mirrors can be valuable to avoid redundant fetching, and 
knowledge of mirroring can be used to compensate for broken links.  

Keywords: Mirroring, Content Duplication, Smart Proxies, Smart Crawlers, Web 
Statistics. 

 



1 Introduction 
What exactly is mirroring? The term is often used in the Web research literature 
but a crisp definition is hard to come by. At one extreme one can say that two 
sites are mirrored if their content is byte-wise identical. In practice this definition 
is too restrictive: even on successive accesses to the same URL the fetched 
content may differ slightly because of dynamic components, timestamps, 
transaction-ids, etc. At the other extreme, one can say that two sites are mirrors if 
enough pages on one are very similar to pages on the other. This definition does 
not address the issue of structure. When two sites have different structures, the 
proof offered by content similarity is not compelling. For instance, consider the 
web sites of New York Times and Washington Post (two major US newspapers). 
On any given day, they are likely to have some syntactically similar pages, e.g., 
because they draw articles from common sources, or because they publish 
official documents. Nevertheless, the two sites can hardly be called mirrors.  

Hence, we define two hosts to be mirrors if:  

i. A high percentage of paths (that is, the portions of the URL after the 
hostname) are valid on both web sites, and  

ii. These common paths link to documents that have similar content.  

Therefore, hosts that replicate content but rename paths are not considered 
mirrors under our definition.  

Two previous studies, one from Digital [3], based on 30 million pages collected 
by the AltaVista search engine during 1996, and one from Stanford [13], based 
on 26 million pages collected by the the Google search engine [2] during 1997, 
point out the large amount of page duplication on the Web. The Digital study 
reported 30% duplication, and the Stanford study about 36% duplication. Both 
studies identified mirroring, that is, the systematic replication of content over a 
pair of hosts, as the principal cause of duplication, but did not shed further light 
on this phenomenon. The main aim of our investigation, based on a set of 179 
million URLs, obtained from a web crawl in the summer of 1998, is to present a 
clearer picture of mirroring on the WWW.  

Among the hosts represented in our input list of URLs roughly 238,000 hosts had 
contributed 100 URL samples or more. We looked for mirrors only in this set of 
well represented hosts. We discovered that about 10% of the hosts in the set 
were mirrored by other well represented hosts to varying degrees. In the next 
section we make this notion more precise, by defining several degrees of 
mirroring, and in Section 4 we present data about the prevalence and extent of 
mirroring according to our classification.  

 



There are numerous reasons for mirroring: technical (e.g., replication to improve 
access time), commercial (e.g., different intermediaries offering the same 
products), cultural (e.g., same content in two languages), social (e.g., database 
of shared research), etc. Although we have not done a comprehensive study of 
the reasons behind mirroring, we present several cases that seem 
representative.  

The technique we devised to detect mirrored hosts from large data sets depends 
mostly on the syntactic analysis of URL strings and requires fetching and content 
analysis only for a small number of pages. We use probabilistic tests for 
establishing the degree of mirroring. This makes our technique computationally 
very efficient. We are able to detect both partial and total mirroring, and handle 
cases where the content is not exactly identical. Furthermore, our strategy does 
not assume that the initial set of URLs from each host is comprehensive. Hence, 
our technique has practical uses beyond our study, and can be applied to other 
settings. For example, from the point of view of web crawlers and caching 
proxies, detecting mirrors can be valuable to avoid redundant fetching and 
knowledge of the existence of mirrors can be used to compensate for broken 
links.  

The paper proceeds as follows: in Section 2 we establish a classification of 
mirroring; Section 3 describes our approach to detecting and classifying mirrored 
hosts; Section 4 presents data from our experiment; Section 5 discusses motives 
for mirroring; Section 6 presents other applications of this technique; Section 7 
mentions related work and in Section 8 we draw some conclusions.  

2 A Classification of Mirroring 
We observed various degrees of mirroring. To classify them, it is helpful to 
distinguish between structure and content. Structure is defined by the set of valid 
paths relative to the host under consideration. If two hosts have exactly the same 
set of paths, we say that they are structurally identical. With regard to content, we 
say that two pages are content identical if they are byte-wise equal. However 
during mirroring, pages often change at the byte level (e.g., by the addition of 
blank lines, by HTML reformatting, etc) without any change of content. Hence we 
say that two pages are content equivalent if they have identical content after 
such normalizations. If pages change in content (e.g., due to a banner ad or 
other forms of dynamic content) but remain highly similar at the syntactic level, 
we call them highly similar. High similarity may be defined based on the edit 
distance or some other suitable measure. In this paper we use the similarity 
measurement technique we developed in [3], with a suitable threshold. Finally, if 
pages change substantially at the syntactic level but are semantically similar 
(e.g., translated content), we call them related. This leads to the following 
classification of mirroring levels:  
 
 



Level 1 -- Structural and content identity.  
Every page on host A with relative path P, (i.e., a URL of the form http://A/P) 
is represented by a byte-wise identical page on host B, at location http://B/P, 
and vice versa.  

Level 2 -- Structural identity. Content equivalence  
Every page on host A with relative path P, is represented by an equivalent 
content page on host B, at location http://B/P, and vice versa.  

Level 3 -- Structural identity. Content similarity.  
Every page on host A with relative path P, is represented by a highly 
similar page on host B, at location http://B/P, and vice versa.  

Level 4 -- Partial structural match. Content similarity.  
Some pages on host A with relative path P, are represented by a page on 
host B, at location http://B/P, and vice versa, and these pairs of pages are 
highly similar  

Level 5 -- Structural identity. Related content.  
Every page on host A with relative path P, is represented by a page on 
host B, at location http://B/P, and vice versa. The pages are pair-wise 
related (e.g., every page is a translation of its counterpart) but in general 
are not syntactically similar.  

Mismatch -- None of the above.  
This induces the partial order shown below. Level 4 and Level 5 are not 
comparable.  

Level 1  
Same Structure. Identical Content.  

Level 2  
Same Structure. Equivalent Content.  

Level 3  
Same Structure. Similar Content. 

Level 4  
Similar Content. 

Level 5  
Same Structure. 

Another factor that can be used to detect and classify mirrors is their IP address: 
mirrors often have related IP addresses. A DNS lookup provides one or more IP 
addresses for each host. If two hostnames map to a common IP address it 
indicates that they fetch pages from a common machine. However, this does not 
confirm a mirroring relationship. This is because a hostname may map to many 
IP addresses on different machines, and a given IP address may be used to 
implement virtual hosts that do not have a mirroring relationship. A DNS match 
helps build confidence about mirroring, but does not confirm it. We do not 
consider server IP address in our classification scheme.  

 

 



3 Technique 
Our technique allows us to detect pairs of mirrored hosts given a large set of 
URLs. The set need not be comprehensive, that is, not all paths on all hosts 
need to be present. This is typical of the results of even large crawls because no 
crawl is exhaustive due to the rapid rate of growth and change on the Web. 
Hence, the trivial solution of simply counting the number of common paths 
among hosts often does not work. Our procedure for detecting mirrored host 
pairs consists of two stages:  
 
Stage I: Candidate Pair Detection. In this stage we consider the URLs available 
from each of the hosts in our database, sample a subset of these URLs and 
compute syntactic similarity between these subsets. As explained below, we use 
coordinated sampling to increase the likelihood of selecting the same paths from 
hosts that happen to be mirrors. The output from this stage is a list of host pairs 
that are potential mirrors, ordered by likelihood.  

Stage II: Host Pair Classification. In this stage we process the list of candidate 
host pairs from Stage I, and test in each case if the hosts are indeed mirrors and 
estimate the extent of their overlap. 

Note that our tests are probabilistic in nature. That is, it is conceivable that we 
may fail to recognize a pair of mirrored hosts in Stage I, or we may err in 
measuring the degree of overlap between them in Stage II. The experimental 
evidence however suggests that the tests are fairly reliable.  

We describe each of the stages next.  

3.1 Candidate Pair Detection 

In this stage we compute a set of features for each host, and search for pairs of 
hosts that share many features in common. As mentioned above, using full paths 
as features is not practical, since we assume that our information with respect to 
any given host is incomplete (i.e., not all paths are available). Instead we use 
fragments of the path and the hostname as features. The intuition here is that 
even if identical paths are not available from a host and its mirror, the URL 
strings will at least share some segments in common. This is a reasonable 
assumption because URL paths usually represent the directory structure within 
which the web pages are located. Consequently, we can expect prefixes 
representing top level directories to be shared by many URLs. One possibility 
would be to use prefixes as features. However, it is often the case that two or 
more top level directories share the same naming scheme for the directories 
under them.  
 
 
 



For example, the paths:  
dec97/sales/charts/... , feb98/sales/charts/..., aug98/sales/charts/... 
sampled from different hosts, would fail to be correlated if one considered 
prefixes as features. Therefore, as we explain below, we use pairs of consecutive 
directories' names along the path (called word bigrams) as features. Matching 
word bigrams across hosts proves to be very effective.  

For large data sets (179 million URLs in our case) reducing the number of 
features to be considered is a priority. One way to do this is to ignore hosts which 
contribute a small number of URLs to the collection. Such hosts are either small 
in size and hence unlikely to have much mirrored content, or poorly sampled, in 
which case the samples in the collection may not be very representative. We 
decided to only consider hosts that had at least 100 URLs in our collection. A 
further data reduction is obtained as follows: for every host we first sort the list of 
URLs, and then only consider those paths whose strings upon hashing yielded a 
value which is 0 mod m. The aim of this step is to increase the correlation 
between the selected paths. If a path is selected on one host, it increases the 
likelihood that the same path is selected on its mirror. Initially, we take m to be 5. 
After the first 20 paths are sampled this way, m is doubled, and this doubling is 
repeated at certain thresholds. The doubling thresholds are picked so that the 
sample count from a host is sub-linearly proportional to size. This ensures that on 
the one hand we sample more paths from larger sites than from smaller sites, but 
on the other hand large sites do not dominate the list of features.  



Feature Generation  

The hostname and the set of paths derived from a given host as described 
above, contribute a set of features associated with host. Each string is converted 
to a list of terms by:  

• Converting to lowercase. Paths may or may not be case sensitive, but 
hostnames are not. We ignore case for both.  

• Treating sequences of non-alphabetical characters as word-breaks. This 
gives a list of words. Thus, www7.infoseek.com and www6.infoseek.com will 
yield the same list: (www,infoseek,com).  

We generate word bigrams by treating every contiguous pair of terms as a 
features. For example, the hostname www.infoseek.com generates  
(www,infoseek) and (infoseek,com), 
In fragmenting the path we also associate depth information. This gives us 
positional word bigrams. For example :  
/cellblock16/inmates/dibert/personal/foo.htm 
gives  
(cellblock,inmates,0)(inmates,dilbert,1)  
(dilbert,personal,2)(personal,foo,3)(foo,htm,4) 
as features. Position is useful because we are trying to find mirror sites that 
share the same path structure. Finding mirror sites that both mirror content and 
rename paths is a harder problem, which we do not address.  

Finally, to reduce the set of features to be considered and reduce noise in the 
matching process we do three things:  

1. Eliminate stop terms such as: htm, html, txt, main, index, home, bin, cgi  
2. Avoid URLs that have terms like nph, dynaweb, and zyview, which are 

characteristic of web sites created automatically by tools. Such sites lead 
to spurious matches because they use a standard naming scheme.  

3. Eliminate path features that do not occur at least twice on the host. This 
eliminates leaf items in the path, unless they are part of a pattern.  



Feature Matching  

For each valid feature we write the tuple <feature,host> to a file. At the end of the 
run, the file of tuples is sorted by the first element of the tuple, namely the 
feature. For any given feature, this causes all hosts that contain the feature to be 
listed contiguously. This allows the list to be processed in a single pass in order 
to compute the similarity between pairs of hosts that share common features. In 
our feature matching scheme, features are weighted in inverse proportion to the 
number of hosts they occur in. This corresponds to the usual IDF (inverse 
document frequency) weighting used in information retrieval. Features that occur 
in many hosts are considered too common to be significant, and correspondingly 
their IDF weight is low. As an optimization, we skip all features that occur within 
more than 20 hosts. For the rest, for every feature f, we consider each pair of 
hosts that share it and increment the Similarity_Score(Host1, Host2) by the weight of 
the feature, FW(f).  

FW(f) is defined thus:  

FW(f) = S(f)/N(f),  

where S(f) is a measure of the significance of f independent of its distribution, and 
N(f) is the number of hosts in which f occurs. We set S(f) to 4 for host features and 
to 1 for path features, since a host feature match offers evidence that the two 
sites are part of the same organization (given that we consider only rare 
features). 

The Normalized Similarity Score of each pair (Host1, Host2) is computed thus:  
Similarity_Score(Host1, Host2)

Normalized_Score(Host1, Host2) = 
1 + 0.1*( Log(N1) + Log(N2) )

N1 and N2 represent the number of URLs in the input from Host1 and Host2 
respectively, and are assumed to be proportional to their sizes. The denominator 
helps normalize the score by host size, to compensate for the fact that large 
hosts will have more feature matches than small hosts. Our parameters appear 
to perform satisfactorily but may afford some tuning.  

At the end of this run, the normalized similarity score of every pair of hosts that 
share a significant feature will have been computed. A list of <score,host-pair> 
tuples is written to a file. To reduce mismatches we filter out host pairs that have 
only one feature in common, and also every pair that does not have a path 
feature in common. The remaining host pairs are sorted in the descending order 
of normalized similarity score. This optional step reduces false positives at the 
risk of skipping some mirrored pairs. This results in the output from Stage I, 
namely a list of prospective mirroring hosts, in the decreasing order of probability.  

 



3.2 Host Pair Classification 

In Stage II, the list of sorted host pairs from the previous stage is processed, and 
we classify each host pair into one of many categories based on the classification 
of mirroring hosts discussed in Section 2.  

To classify a host pair we estimate the fraction of the paths from one host that 
are valid on the other host, and the extent to which the pages referenced by the 
common paths are similar. Thus, there are two steps: (i) selecting paths to test, 
and (ii) checking for validity of paths and computing similarity between pages 
corresponding to the valid paths.  

The first step is done only once per host. Since a given host may occur in many 
host pairs, the same paths are reused. For each pair of host pages, the two root 
pages (the null path) are always considered. Also, in our experiment, we selected 
9 additional paths at random per host from the paths chosen in Stage I, giving a 
total to 10 path samples per host.  

In the second step the selected paths are used to fetch documents from both 
hosts, namely the source host where the path is known to be valid, and the target 
host, where the validity of the path is to be tested. The GET could fail at the 
source or at the target. If we succeed in fetching both pages we check if the 
contents are the same. This can be done at various levels of tolerance to 
change. In the strictest instance, this can be done by fingerprinting both 
documents (i.e., computing a checksum, such that with high probability any two 
distinct documents will have different checksums). However, in practice we find 
that content is often non fingerprint-identical. This can happen even on 
successive GETs to the same server, due to variable server-side includes or 
dynamically generated web-pages. With mirrored content there is an even 
greater likelihood of a discrepancy, due to version inconsistencies and local 
server-side includes. To compensate for this we de-tag the content, ignore 
whitespace and check for syntactic similarity, that is, closeness of textual 
content, instead of fingerprint equality. Following [3] we use the mathematical 
concept of "resemblance" to capture the informal notion of syntactic similarity.  

The resemblance, r(A, B), of two documents A and B is defined as follows: first 
each document is transformed into a set of word k-grams, S(A) and S(B), also 
called "shingles". Then we compute 

 
where |S| is the size of the set S. 

 
 
 
 



(As explained in [3] the resemblance can be estimated using a fixed size 
``sketch'' for each document. For a large collection of documents (say 100 
million) the size of this sketch is of the order of a few hundred bytes per 
document.) Clearly, the resemblance value, r(A,B), is a number between 0 and 1, 
which we can use to express the similarity between A and B as a percentage.  

By considering structural resemblance and/or content resemblance (with different 
similarity thresholds), the host pairs were classified into one of many levels. For 
our experiment we defined the threshold for high similarity as 50%. Additionally, 
we used a 100% threshold to check for full similarity and a 0% threshold for trace 
similarity. When all similarity checks fail, the pair is classified as a Mismatch.  

Between any pair of hosts there are 19 web page comparisons in all: a pair of 
root pages + 9 source pages sampled from each host. In each case one of the 
following outcomes is possible  

• SF: Source Failure. GET failed at source host.  
• TF: Target Failure. GET failed at target host.  
• FM: Fingerprint Match. Content is byte-wise identical.  
• FS: Full similarity. The documents are 100% equivalent after de-tagging.  
• HS: High similarity. Common content is above the threshold for high 

similarity.  
• TS: Trace Similarity. A small (non-zero) portion of the document is 

common.  
• NS: Path is valid, but no syntactic similarity .  



Based on what we observe in the 19 tests, each host pair is assigned a 
classification level. The assignment criteria for various classification levels is 
summarized below:  
   
Classification Criterion Implication 

Level 1 All tests show SF or FM and 
not all are SF. Same Structure. Identical Content. 

Level 2 All tests show SF or FM or 
FS, and not all are SF 

Same Structure. Equivalent 
Content. 

Level 3 
All tests show SF or FM or 
FS or HS, and not all are 
SF. 

Same Structure. Similar Content. 

Level 4 Some tests show HS or FM. Structure is partially replicated. For 
replicate paths, content is similar.  

Level 5 No test yields TF and at 
least one with TS. 

Same structure (since all paths are 
valid). Some of the content appears 
related. 

Mismatch All tests result in TF or NS. Not similar 

DNS failure DNS lookup failed for one of 
the hosts 

No information. Presently 
inaccessible 

Server failure One of the two servers was 
inaccessible. 

No information. Presently 
inaccessible 

Table 1: Classification of Host Pairs 

See Section 2 for a definition of these levels of similarity. Note that our test for 
Level 5 similarity is stricter than the definition in Section 2, which does not require 
trace similarity testing. This criterion was added to compensate for the case 
when all paths seem valid on the target host because it returns its own error 
page for mismatches instead of a 404 HTTP result. Also note that our tests are 
only statistical tests for the level of mirroring inferred. It is entirely possible that 
the actual level of mirroring is different, although the evidence suggests that our 
tests are fairly reliable.  



4 Experiment 
As our input we used a sorted list of about 179 million URLs. These were found 
on web pages obtained in a broad crawl of the WWW, and included some whose 
validity had yet to be verified. Thus, the set contained several bogus URLs, 
misspellings and broken links. Surprisingly, some hostname misspellings 
occurred commonly enough that they appeared in the Stage I candidate list, 
paired with the correct version of the hostname. For example, we found that the 
non-existent site, "www.geocites.com" was paired with "www.geocities.com", indicating 
that it is a common misspelling.  

In Stage I, we selected 238,679 hosts to process as described in the previous 
section. By sampling on average 20.8 paths per host, we obtained about 2 million 
features that matched our selection criteria. Using the similarity weighting and 
host pair filtering technique described in Section 3.1 we produced a list of 29,336 
host pairs to be validated at the end of Stage I (see table below).  
   

Input Set of URLs 179,369,374
Stage I Processing 

Hosts considered (with > 100 links) 238,679
Paths sampled (~20.8 per host) 4,970,064
Features considered 2,001,423
Number of candidate host pairs after Stage I 29,336

Stage II Processing 
Total Number of Successful Tests  21,820
   Level 1 Matches 9,619
   Level 2 Matches 700
   Level 3 Matches 406
   Level 4 Matches 6,011
   Level 5 Matches 189
   Mismatches 4,895
Total Number of Unsuccessful Tests  7,516
   Server Failure 3,977
   DNS Failure (Invalid Server Name) 3,539
Mirrored Host Pairs Found (Level 5 match or better) 16,925

Distinct Hosts that are Mirrors (Level 5 or better) 22,363
(9.4% of hosts)

Table 2: Details of the Experiment 



In Stage II, not counting failures, we had 21,820 successful tests. Of these 
16,925 were found to be mirrors and 4,895 were mismatches. We found 22,363 
hosts with a Level 5 mirroring relationship or better. This corresponds to about 
9.4% of our total set of large hosts.  

4.1 Ranking Evaluation 

As can be seen from Table 2, Level 1 matches and Level 4 matches account for 
most of the positive matches that we saw. Figure 1 shows the effectiveness of 
the ranking strategy used in Stage I. After eliminating all unsuccessful tests from 
the ranked list, the graph plots the percentage of host pairs that were classified in 
a certain way for various prefixes of the reduced ranked list (21,820 host pairs in 
all). E.g., on considering the top 49% of the candidate list (roughly 10,000 host 
pairs) we note that about 68% of the host pairs have a Level 3 similarity or better. 
This represents a set of hosts that can be used interchangeably from the point of 
view of most users. About 88% have a Level 4 similarity or better at this point, 
indicating that they have at least a partial mirroring relationship.  

 
Figure 1: The graph shows, for various cut-offs, the percentage of the  

successfully tested host pair list classified as: (a) Levels 1-3 (b) Levels 1-4  



4.2 Cross Domain Mirroring 

Table 3 shows shows the distribution of cross-domain mirrors. These are pairs of 
mirrored hosts in which the domains of the two hosts differ. Cross-domain 
mirroring is interesting because it often reveals mirroring across organizational 
boundaries. In other cases it reveals mirroring for geographical reasons, within 
the same organization. The table shows the 10 most common domain 
combinations we encountered for various mirroring classifications.  

When one considers hosts that are fully replicated (Levels 1-3), the most 
common case is when a "com" site is mirrored as a "org" site. Almost as frequent 
is the "com-net" combination. We then see several instances of a "com" site being 
mirrored under a country's domain.  

The "com-edu" combination seems to occur more with partial replication (Level 4). 
This suggests the sharing of databases rather than a replication of the site's main 
functionality.  

Figure 2 shows a cluster of research sites that we found to have Level 4 similarity 
because they all had copies of the Protein Data Bank (PDB). The PDB is an 
archive of experimentally determined three-dimensional structures of biological 
macromolecules, shared by researchers world-wide. Our experiment revealed 
almost all the pair-wise mirroring relationships between hosts containing the PDB 
database which appeared in the Stage I short-list. We discovered that there are 
some other PDB mirrors that did not make it to the short-list, either because they 
did not appear in our original list or because fewer than 100 URLs were retrieved 
from them. This suggests that a more comprehensive list of URLs and a lower 
inclusion threshold might have identified all of them.  

 
Figure 2: Protein Data Bank Cluster. The edges indicate cross-domain Level 4  

similarity between sites that have a mirrored copy of the Protein Data Bank. 



With structural cross-domain replication (Level 5) we tend to find web sites by the 
same organization mirrored in other languages or catering to local content. E.g., 
(www.yahoo.ca, www.yahoo.co.jp) or (infoart.stanet.ru, infoart.baku.az).  

Rank Based on  
Frequency of 
Occurrence 

Full 
Replication  
Levels 1-3 

Partial 
Replication  

Level 4 

Structural 
Replication  

Level 5 

1 com-org 
(12.1%) com-net (14.3%) com-net (19.23%) 

2 com-net 
(10.06%) com-edu (3.08%) ca-edu (19.23%) 

3 com-de (5.17%) com-org (3.08%) edu-us (11.53%) 
4 com-uk (4.89%) de-edu (2.94%) ca-com (11.53%) 
5 com-fr (4.48%) ca-com (2.32%) az-ru (11.53%) 
6 edu-org (3.8%) com-de (2.19%) com-sg (7.69%) 
7 com-jp (3.53%) au-com (2.12%) cl-org (3.84%) 
8 net-org (2.44%) edu-uk (1.77%) kz-ru (3.84%) 
9 at-com (2.44%) edu-jp (1.5%) mx-org (3.84%) 
10 com-kr (2.17%) com-fr (1.5%) ca-jp (3.84%) 

Cross-Domain 
Mirrors 735 1461 26 

Table 3: Distribution of Cross-Domain Mirrors 

4.3 Examples 

The examples below were chosen to illustrate the various levels in our hierarchy. 
They behave as described at the time of writing. Since the Web is constantly 
changing, it is impossible to guarantee that they will continue to do so in the 
future.  

Level 1 Examples (Cross Domain)  

www.boutiques-de-gestion.asso.fr(20 samples)  
www.boutiques-de-gestion.com(19 samples)  

www.ruskin-sch.milohedge.com(20 samples)  
www.ruskin-sch.ox.ac.uk(20 samples)  

www.upa.net(20 samples)  
www.upaccess.com(20 samples)  

 



Level 2 Examples  

These sites do virtual hosting from the same server, and have content that differs 
in minor ways:  

sys1.tpusa.com(20 samples)  
www.i-trade.com(20 samples)  

www.palladium.net(20 samples)  
www.parroty.com(20 samples)  

Level 3 Examples  

These are hosted by the same server but appear to be different because of 
dynamic content (a visitor counter).  

www.dancecorner.com(20 samples)  
www.swingdance.com(20 samples)  
Level 4 Examples  

These are mirror sites in French and English. They have the same path hierarchy 
but with translated content. This is characteristic of Canadian organizations with 
bilingual content. Some pages are common, so this does not appear to be  
Level 5.  

www.cbsc.org(56 samples)  
www.rcsec.org(63 samples)  
These mirrors have identical content, but with French accented characters 
replaced with their HTML entity equivalents in one case. Consequently the pages 
that were compared appeared to have high or trace similarity rather than full 
similarity or fingerprint equivalence.  
bleue.ac-aix-marseille.fr(20 samples)  
www.ac-aix-marseille.fr(20 samples)  
These are 2 different school sites, built with the same tool (Microsoft 
Communication Tool for Schools). Hence, they have a similar hierarchy, and 
layout, but differ in content.  
wchs02.washington.high.washington.k12.ga.us(20 samples)  
www.sd70.bc.ca(20 samples)  
Although these have different IP addresses and their root pages are different, 
paths from one source seem to produce identical pages on the other. This led us 
to the discovery that DesertNet implements the newspaper, Tucson Weekly.  
www.desert.net(111 samples)  
www.tucsonweekly.com(66 samples)  
 
 
 
 
 
 



Level 5 Examples  

These two differ only in their encoding of Cyrillic. The content is the same.  

www-ibm866.consultant.ru(20 samples)  
www-windows-1251.consultant.ru(20 samples) 
Two libraries that use the same query engine. Consequently queries on one are 
valid on the other.  
leagle.wcl.american.edu(127 samples)  
library.cwu.edu(102 samples)  
Same content, mirrored in Spanish and English.  
tribute.lronhubbard.cl(20 samples)  
tribute.lronhubbard.org(18 samples) 

5 Motives for Mirroring 
From extensive crawls of the WWW we have an idea of how many web sites 
there are out there. Earlier in 1998, Alexa [11] recorded the existence of 500,000 
Web sites and predicted a doubling of web sites every 6 months. Understanding 
how much replication is going on and the reasons for it is necessary to 
understand the evolution of the WWW.  

We found that there are many incentives to replicate data at the present time:  

1. Load Balancing: Replication decreases server load. E.g., www1.geocities.com 
and www14.geocities.com  

2. High Availability: The Protein Data Bank example presented in Section 4.2 is 
an instance of geographical mirroring for high availability.  

3. Multi-lingual replication: The same data is made available in many languages. 
For example several Canadian sites have mirrors that only differ in the language 
used, French or English.  

4. Franchises/Local Versions: This happens when content is licensed to other 
parties. E.g., quicken.excite.com and quicken.com have the same content, except for 
some site-specific branding.  

5. Database Sharing: Two independent sites may share the same database or 
filesystem leading to mirroring, unintentionally. E.g., www.desert.net and 
www.tucsonweekly.com.  

 

 



6. Virtual Hosting: These represent services that use the same IP address (and 
hence the same server) but implement two different web sites based on the host 
name. E.g. sports.catalogue.com and www.accsports.com. In this case paths on one 
are valid on the other and yield identical pages. This need not always be so. In 
another case, www.autotune.com and www.borg-warner.com, the two virtual hosts 
share the same IP address but paths on one may not be valid on the other, and 
common paths lead to dissimilar content.  

7. Maintaining Pseudo Identities: Often, the incentive for such replication is to 
"spam" search engines with seemingly different web sites that in fact have the 
same content, hoping that one of them gets listed at the top of the ranking order. 
E.g., two "adult" sites www.discountdvd.com and www.xxxpass.com.  

6 Other Applications 
Our main reason for conducting this study was to further understand the 
geography of the Web. In addition, mirroring information is useful in the 
implementation of smart caching proxies and efficient crawlers. Levels 1 to 3, 
according to our classification, indicate pairs of hosts that can be used 
interchangeably. A proxy that maintains such a list of mirrors can serve a cached 
page from any of the mirrors of a given host, provided that the path is the same. 
A smart proxy can also try and compensate for broken links or server failure by 
transparently checking if the page is available on a mirror site. A crawler that tries 
to cover as much as the Web as possible in the shortest possible time can use 
mirroring information to avoid redundant crawling over mirrored parts of the Web. 
Also, in the interests of load balancing or in the interests of speed it can 
selectively download a path from an equivalent host.  

Several recent ranking algorithms that rely on connectivity (e.g., [1, 4, 7]) treat 
hyperlinks within a host differently from hyperlinks across hosts. Hyperlinks in the 
latter case are considered indicative of quality, since they suggest a form of 
endorsement across organizations. Mirroring information has the potential to 
make these algorithms more robust and accurate, because it can identify 
organizational bounders that span many hosts.  

Broken links on the WWW are a common problem. The use of publishing tools 
and inter-server communication protocols has been advocated [5, 6] to preserve 
referential integrity when links change. Until such a protocol is adopted globally, 
and legacy servers are retired, we will continue to see "Page Not Found" errors. 
When a broken link refers to a known replicated host, mirroring information can 
be used to fetch an equivalent copy of the page.  

 

 



To our surprise, we found that our scheme was even able to find "pseudo 
mirroring" relationships involving misspelt hostnames (e.g., geocities.com misspelt 
as geocites.com). This suggests that given a large sample of user requests, as in a 
proxy log or a large crawl of the Web, this strategy might be able to correct 
frequent typographical errors.  

7 Related Work 
The word bigram features that we select and the IDF based weighting scheme 
we use were influenced by standard feature extraction and classification 
practices in Information Retrieval. See [14] for an overview of IR techniques.  

Many researchers (e.g., [9, 8]) have looked at the use of cooperating web proxies 
to reap the benefits of caching, say within an Intranet where a certain degree of 
access locality can be expected. Others (e.g., [15, 16]) have studied hierarchical 
caching. On similar lines, one could imagine a set of cooperating proxies that 
periodically pool the sets of URLs they encounter to mine mirroring information 
that they can all use. This could be used to boot-strap a more pro-active scheme 
such as a mirror registry, where host administrators can register information 
about mirroring.  

In some respects, our validation technique is similar to the one used in the Ahoy! 
[12] home finder engine. Given a person's name and affiliation, Ahoy! generates 
various possible home page URLs and validates them by trying to fetch them. 
The templates for these URLs are computed by syntactic analysis of URL strings 
- specifically home page URLs encountered previously on the same host.  

Statistics from the Online Computer Library Center based on a sample of about 
3000 hosts generated by random sampling of IP addresses (See [10]) lead to an 
estimate of the existence of 1.7 million public web sites as of June 1998, of which 
about 12% were thought to be mirrored. Their result is not directly comparable to 
our 9.4% estimate since their study did not consider arbitrary mirrors, but only 
pairs of IP addresses that either map to the same hostname or share the first 
three octets. These pairs were tested to see if they have an HTTP server that 
returns identical root pages. On the other hand, we only considered mirroring 
relationship among the hosts that were well represented in our collection.  



8 Conclusions 
Previous studies of the Web have identified mirroring as a cause of duplication 
on the web but have not analysed the mirroring issue in depth. In this paper we 
take the next step forward and describe a study to measure systematic 
replication among hosts. We started from a collection of 179 million unverified 
URLs found during a Web crawl from which we chose a set of 238,000 well 
represented hosts. We discovered that about 10% of these hosts were mirrored 
to various degrees within this set. We believe this to be a lower bound, since (a) 
not all Web hosts were represented and (b) taking more samples per host could 
in principle expose more mirroring. In the course of our study we identified 
several qualitatively different classes of mirroring and presented here 
characteristic examples from each class.  

Our technique is efficient because it operates syntactically on URL strings and 
requires fetching only about 20 pages per prospective mirrored host for 
confirmatory content analysis. We advocate its use for detecting mirrors in web 
proxies and crawlers in order to reduce redundant fetching and to improve 
caching behavior and reliability.  
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